2 Network Metrics

A valuable feature of networks is their ability to quantify structural relationships. Much
like a chemist, who, having purified their sample, can bring to bear a wide range of tools
to examine its qualities, a network scientist, having transformed their data into a network,
can leverage a wide range of tools to understand its structure.

Network analysis allows us to do this at three different scales:

e Micro: What are the structural properties of individual nodes and edges?

e Meso: What are the structural properties of local communities or subgraphs (i.c.,
subsets of the network)?

e Macro: What are the structural properties of entire networks?

By tuning our analysis across these three different levels, we can bring different features
of the network into focus. For example, nodes have structural features such as how many
neighbors they have (degree) and how far away they are from other nodes (shortest path
length). Whole networks have the average of their individual nodes’ features, but they
also have graph-level properties such as overall connectivity (density), the distinctive-
ness of their communities (modularity), and the likelihood that similar nodes connect
with one another (assortativity). Subgraphs — which can be identified using various
methods — can be evaluated both at the node and graph level, as well as compared with
one another.

The number of possible measurements is vast and there are too many to cover in any
single book. There are many excellent resources for learning more than are presented
here (e.g., Barabasi & Posfai, 2016; Menczer et al., 2020; Newman, 2018). More prag-
matically, it is not uncommon to develop one’s own measures that are fit to purpose,
and this book provides several examples of that as well. Here we will cover some of the
most popular off-the-shelf measures as these are the ones researchers are most likely to
encounter and use. Table 2.1 provides a quick reference for the nomenclature. These also
provide a solid foundation for understanding and developing others. I will present these
in a concise format, with brief examples and accompanying online code, noting that we
will cover these in more applied cases later.

2.1 Nodes, Edges, and Density

Leo Tolstoy once noted that “all happy families are alike; each unhappy family is unhappy
in its own way.” If we consider a network as a kind of family, and happy families as being
made up of individuals that are all happy with one another, then we can translate our
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Table 2.1 Basic network measures.

Variable Definition

Number of nodes
Number of edges
Density

Average shortest path length
Diameter

Clustering coefficient
Degree

Betweenness centrality
Closeness centrality
Eigenvector centrality
Assortativity

QYOS T AL 2

Modularity

happy family into a network with edges between every pair of nodes. Such a network
is a fully connected graph or a complete graph. When edges go missing, the house
becomes divided, and the possible ways in which this can happen proliferate.

A graph-level measure of this division is density, which is the number of observed
edges divided by the number of possible edges. For an undirected network, it is therefore
the probability that if you select a random pair of nodes, you will find an edge between
them.

If an undirected network is fully connected — all nodes are connected with one
another — the density is 1. Groups of nodes that have this property are called a clique:
they are fully connected and therefore have a density of 1 among themselves.

If there are no connections between nodes, this is an empty graph and the density is 0.
Nodes that are completely unconnected are called isolates (or hermits).

How many possible edges are there for a network of size N? A square adjacency matrix
with N nodes has N rows and N columns and is therefore size N x N. If every node can
have a directed edge to every other node, including itself, then every cell in the adjacency
matrix could have a value of 1, giving us N x N = N? possible edges. This powers
Metcalfe’s law: the value within network relationships grows as N2.

If we don’t include self-loops, then we subtract the diagonal, which gives us N> — N =
N(N—1), which is the possible number of edges in a directed network without self-loops.

An undirected network has only one edge possible between every pair of nodes; recall
that it is symmetric and therefore A; = Aj;. So it has half as many possible edges as
a directed network. The total number possible is then N(N — 1)/2 for an undirected,
unweighted network with no self-loops.

Thus, we can define density, p, for an undirected network as:

2F observed edges

P= N(N —1)  possible edges

By definition, as the density increases it becomes more likely that nodes in a network will
be connected together.
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2.1.1  Paths and Path Length

“Six degrees of separation” and “it’s a small world after all” reflect our surprise that peo-
ple are often more socially near one another than we anticipate. In network terminology,
we say that the path length is short. The number of edges we would need to traverse to
get from one person to the other is small.

The shortest path between nodes i and j is called their geodesic distance, and it is the
minimum distance in edges needed to travel between them. It can be written as dj;. In a
simple network, the distance is the count of edges. If the network is directed, the path
must follow the direction of the edges.

The dark edges in panel (a) of Figure 2.1 show that the shortest distance between node
1 and node 5 is 3. There can be more than one shortest path if several paths have the same
length. For example, the path here could also travel from 1 — 3 — 6 — 5.

If two nodes are not connected by a path, the path is infinite.

The average shortest path length, L, for a network is the average of the geodesic
distances between all pairs of nodes that have a finite path length. Figure 2.2 provides an
example with each node labeled with its average shortest path length. Table 2.2 provides
the corresponding matrix of path distances for each node to every other node.

The diameter, D, of a network is the longest path length we would have to travel to
get between the two most distant nodes if we took the shortest path between them. It
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Figure 2.2 The average shortest path length. Each node is labeled with its average shortest path
length to all other nodes (inside the circle). The average of these is the average shortest path length
for the network. Each node is also labeled to the right with its node ID from Table 2.2.
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Table 2.2 The distance table for the graph shown above. Each cell
indicates the shortest path between the nodes indicated by the row

and column.
1 2 3 4 5 6 7 8 9 10
1 0 4 1 3 3 2 3 4 2 4
2 4 0 3 1 3 2 5 2 4 4
3 1 3 0 2 2 1 2 3 1 3
4 3 1 2 0 2 1 4 1 3 3
5 3 3 2 2 0 1 4 1 3 1
6 2 2 1 1 1 0 3 2 2 2
7 3 5 2 4 4 3 0 5 1 5
8 4 2 3 1 1 2 5 0 4 2
9 2 4 1 3 3 2 1 4 0 4
10 4 4 3 3 1 2 5 2 4 0

is therefore the longest of the shortest paths. It is analogous to measuring the diameter
of a circle.

The path length of a weighted network can be computed in terms of number of edges
(as noted earlier) or it can use the weights of edges. How we use the weights depends
on what the weights represent. If the weight represents some measure of closeness (such
as similarity), then to correspond to distance it should be construed as the inverse of the
weight, 1/w. If the weight indicates a form of distance along the edge, then path length
can be computed straightforwardly as the sum of the weights.

Because infinite paths are computationally intractable, the average shortest path length
is computed among only those nodes that share a path — that is, they are reachable. This
can create some curious behavior. Imagine a network that changes its structure by break-
ing into dyads, like a dance party. When this happens the average shortest path length is
1, but most nodes are not connected at all. The average shortest path length would then
become a poor indicator of the connectivity of the network. In general, as nodes become
unreachable via paths, average shortest path length becomes a less desirable measure of
network structure. Some other measure of connectivity is likely to be better, such as the
number of components.

2.2  Components

Various estimates suggest there are on the order of 100 groups of Indigenous peoples who
remain uncontacted by the larger non-Indigenous society we might think of as the world
community. The majority of these isolated groups live in South America and, because
they remain uncontacted, their true numbers are difficult to estimate. In the small world
experiment of Stanley Milgram (1967), in which people attempted to send letters via
acquaintances to people they did not know, these Indigenous peoples could not have been
included in the data because they are, by definition, unreachable. The six degrees of sep-
aration we often use to describe the structure of our social environment — and which was
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(@)
Figure 2.3 A network with 4 components.

in some ways confirmed by Milgram’s experiment — does not really apply to everyone. It
only applies to those who are reachable. Unreachable nodes are said to be in a different
component.

A component is a collection of nodes that are all reachable, one to the other. Every
node in a component can reach every other node in that component by traversing a path
over consecutive edges. Figure 2.3 has four components: the largest or giant component
with 24 nodes, a smaller island with 2 nodes, and two solitary isolates.

When a network is directed, a component is strongly connected when all its nodes
are reachable by following the direction of path edges. A component is only weakly
connected if some of its nodes are only reachable by swimming upstream — going the
wrong direction along a directed edge.

The number of components in a network can be a useful measure of how discon-
nected a network is. Many network studies focus on resilience and attack tolerance by
deliberately damaging networks to evaluate their resistance to fractionation into multiple
components (see Chapter 13). The thresholding described in Chapter | is one example
of this process for weighted networks.

When focusing on network-level measurements, many network analyses focus only
on the giant component. This helps avoid some of the measurement issues for multicom-
ponent networks, such as infinite path lengths.

Components are a form of meso-scale or community measure. Zooming out to the
whole network we might see it is made up of multiple components. But we can also
zoom in on a single component to see that some communities within it are collections of
nodes that are all directly connected with one another: a clique. This should give you a
sense of the richness of this meso-scale, of which we have only touched the surface.

2.2.1 Network Size, Edge Probability, and Components

When networks change their size, they can change their structure. They can do this even
when the underlying processes in the network are the same. Consider a social constraint,

Downloaded from https://www.cambridge.org/core. University of Warwick, on 14 Feb 2025 at 20:10:13, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108883894.003


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108883894.003
https://www.cambridge.org/core

Network Metrics 29

like Dunbar’s number, which suggests that humans can meaningfully hold relationships
with on the order of 100 people. In a network of 100 people all exercising their Dunbarian
extroversion, the density would be 1 — everyone knows everyone well. But in a 1,000
person network, the density would be 0.1. We would make an error in inference if we
concluded that people were less social in larger networks because the density is lower.
One would want to use a node-level measure to evaluate that.

If two different networks of the same size had different densities, the structural infer-
ence is less problematic. But when they are different sizes, things can become more
confusing.

Consider isolates. The probability that any node remains an isolate is the probability
that it does not share an edge with any other node in the network. One might imagine that
the number of isolates should increase as the size of a network increases, but the intuition
is backward if the probability of an edge remains the same. Suppose the probability of
an edge is p. Then the probability of not sharing an edge with a specific other node is
(1 —p)." As there are N — 1 other nodes, the probability that a node is not connected to
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Figure 2.4 The influence of density and number of nodes on components and connectivity. Number
of nodes is listed along the rows. Edge probability is listed along the columns.

1
The network generating probability is p. The density, p, is the probability we observe from the network data.
As an example, the probability of an edge in a two-node network might be p = 0.5, but it will always have an
observed value p of either 1 or 0.
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any other node is (1 — p)N~!. Because this approaches 0 as N increases, the probability
that a node is an isolate shrinks as the size of the network increases. If we assume the
probability of forming an edge is fixed then the more nodes there are to connect with, the
more likely it is that there will be a connection.

This is science that any party-goer can understand. It is the basis of the birthday
paradox: even if the probability that two people share a birthday is a mere 1/365, the
number of possible shared birthdays (edges) in a group of 23 people is 253. Therefore,
the probability that at least two people will share a birthday in a group of size 23 is
1 — (1 —1/365)3%22)/2 = 0.5, This is another consequence of Metcalfe’s Law.

Figure 2.4 shows random networks generated for different edge probabilities and num-
bers of nodes. As the number of nodes increases, the size of the giant component gets
larger and the number of isolates falls. Similarly for the probability of an edge, as the
probability increases, giant components get larger and the isolates fall away.

2.3 Centrality

When we are more concerned with the structural properties of nodes than with the net-
work as a whole, we are interested in measures of centrality. These vary from local
measures that only look at relationships with direct neighbors (e.g., degree) to global
measures that involve computing relationships with all other nodes in the network (e.g.,
betweenness and closeness). Understanding how nodes differ along these measures gives
us a sense of the diversity in the network and how nodes differ in importance. Centrality
measures therefore give us a node’s-eye view of the network. Averaging over them gives
us a sense of the average microlevel structure of the network.

There are many centrality measures because there are many different ways of measur-
ing structural relationships.” They are each relevant to different structural questions. We
cover the more common ones here and more specialized ones later in the book.

2.3.1 Degree

When we say that someone is an extrovert, what we mean is that they have many social
relations: their degree is high. An introvert, on the other hand, has a low degree by
comparison. Formally, the degree of a node, k, is the number of links it has to other
nodes.

Hubs are nodes with a larger degree relative to other nodes in a network. Isolates have
a degree of 0. In Figure 2.5, every node is labeled with its degree. For most networks,
different nodes will have different degrees. A regular graph has nodes all of the same
degree.

There is a clear relationship between degree and density. To see this, consider the three-
node network shown in panel (a) in Figure 2.6. The maximum possible average degree
would occur if each node is connected to the other two nodes and therefore has a degree

2
The Periodic Table of Network Centrality gives a sense of the breadth available here, and this does not cover
them all: www.schochastics.net/sna/periodic.html.
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Figure 2.5 Degree. Each node is labeled with its degree.
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Figure 2.6 Density. Possible versus observed edges in a network with density 1/3.

of 2. In panel (b), the network only has one edge: two nodes have a degree of 1 and one
has a degree of 0. The average degree is then (1 + 1 4+ 0)/3 = 2/3. The average degree,
2/3, divided by the maximum possible degree, 2, is 1/3. This is equivalent to the density:
A three-node network has three possible edges. If it has one edge, then the density is 1/3.

For undirected networks, the degree of node i is indicated by k; and is the sum along
the row or column of the adjacency matrix:

k=Y Aj=)_Aj
J J

In the equation, Aj; is the value in the adjacency matrix that corresponds to the edge value
between node i and node j. Here, ¥; means to add up all the values of A; for all values
of j.

Indegree and Outdegree If the network is directed, then each node will have an
indegree and an outdegree. Indegree is the number of edges directed toward a node.
Outdegree is the number of edges directed outward from a node. In Figure 2.7 each
node is labeled with its indegree and outdegree.

Summing across a row gives the outdegree:

=3 Ay
J
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Table 2.3 The adjacency matrix for a directed network showing the row
sums (outdegree) and column sums (indegree), which, when summed over
all nodes, are equivalent.

1 2 3 4 5 6 7 8 9 10 Row sums
1 0 1 1 0 1 0 0 0 0 0 3
2 1 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 1 0 0 1 3
4 0 1 0 0 1 0 1 1 0 0 4
5 0 0 0 0 0 0 1 0 1 0 2
6 1 1 0 0 0 0 1 1 1 0 5
7 1 1 0 0 0 1 0 0 0 0 3
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 1 0 0 0 0 0 0 1
10 0 0 0 0 1 0 0 0 0 0 1
Column sums 3 5 1 1 3 1 4 2 2 1 23
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Figure 2.7 Indegree and outdegree alongside total degree. Each node is labeled with its total
degree, indegree, or outdegree.

Summing down a column gives the indegree:*
K= Ay
J
Adding indegree and outdegree gives the total degree:
kfotal _ kin + k;)ut

The average degree for the network is the sum of degrees over nodes divided by the
number of nodes:

1 N
<k>:ﬁ;ki

The number of out-directed edges equals the number of in-directed edges. Therefore, the
average indegree and outdegree are the same, as shown in Table 2.3.

Ajj is defined here as an edge from i to j. Some texts invert this for mathematical efficiency, assigning A;; as an
edge fromj to i. It is best to check the source carefully, noting that sources will vary, as do computational tools.
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Figure 2.8 Various ways of computing the degree in directed and weighted networks. Nodes are
labeled with their relevant degree or strength.

Strength When edges have weights, we want to be able to evaluate the overall strength
of a node’s relationships with other nodes. We can of course compute the unweighted
degree for a weighted network by simply counting edges, not weights. But we can
incorporate weights into the degree by summing the relevant weights. This is called
strength. Networks that are both weighted and directed will have strengths associated
with outdegrees and indegrees. See Figure 2.8.

2.3.2  Clustering Coefficient and Transitivity

If all my friends’ friends are my friends, then we form a group of people who all know
one another. Formally, we are a clique. Less formally, we are a cluster. Clustering is often
formally computed using the clustering coefficient which measures the extent to which
a node’s neighbors are themselves neighbors.

The clustering coefficient has two forms. These view clustering from different vantage
points. The first is from the perspective of an individual node — it is a node-level measure
called the local clustering coefficient. This measures the proportion of a node’s neigh-
bors that are neighbors of one another. That is, it measures the extent to which friends
are friends. See Figure 2.9

If all of a node’s neighbors are connected to one another by an edge, then the clustering
coefficient is 1. If all are unconnected, the clustering coefficient is 0.

Mathematically, the clustering coefficient for a node is the observed number of edges,
e, between its k neighbors over the number of possible edges between its k neighbors. Like
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Figure 2.9 Local clustering coefficient. The clustering coefficient for the node (1) in panel (b) is
shown below the network.

the network as a whole, the number of possible edges between k nodes is k(k—1) /2. Thus,
the clustering coefficient is:

2e

Q:h@—n

Once we have the local clustering coefficient for individual nodes, we can average over
all nodes to get the average clustering coefficient for the graph.

A second and different way to get a graph-level measure of clustering coefficient
is called transitivity.* Transitivity measures the extent to which friends of friends are
friends. However, rather than measure this for individual nodes, transitivity measures this
for the graph as a whole. Transitivity does this by identifying all cases where two nodes
share a common neighbor and are therefore friends of friends. Then it simply takes the
proportion of all these cases where the friends of friends are friends.

In network language, these cases where two nodes share a common neighbor are called
a triplet. The two nodes at the end of the triplet are friends of a friend. They either
share an edge or not. If they share an edge, they make a closed triangle and are called
a transitive triplet (see Figure 2.10).° If they don’t share an edge, they are an intran-
sitive triplet and form a ‘A’ shape: what is also called a 2-star. A 2-star network has a
single center node and two nodes that radiate out from it (who could be connected, or
not).® So every transitive triplet has three 2-stars and every intransitive triplet has one.
Transitivity measures the proportion of 2-stars in the network that are transitive (i.e., a
triangle).

We can represent this iconically as follows:

The function for computing local and global clustering coefficient in the online code uses igraph and is called
‘transitivity’. It is best to ask for the local clustering coefficient or transitivity explicitly, so as not to get
confused.

5
Transitivity comes from the mathematical meaning of the term. If A = B and B = C then A = C, which is a
consequence of the transitive property of mathematics.
More generally, a star network is a network with a single hub node and all other nodes with degree 1 that
radiate out from it.
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(a) (b)

Intransitive triplet Transitive triplet

Figure 2.10 Intransitive and transitive triplets. Transitivity is only computed using triplets with
either of these two formations. In panel (a), we have one 2-star. In panel (b), the transitive triplet has
three 2-stars.
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Figure 2.11 The wheel network demonstrates the difference between transitivity and average local
clustering coefficient. As the outer nodes increase, the average local clustering coefficient
approaches 1 and the transitivity approaches 0.

The total number of 2-stars is designated by A. The total number of transitive triplets
is A. Because each transitive triplet contains three 2-stars, we multiply the number of
triplets by three to account for all the 2-stars they make transitive.

Transitivity and the average local clustering coefficient are not the same. They can
diverge. The majority of individual nodes may all have neighbors who are connected —
making the average local clustering coefficient high — even though the majority of triplets
are non-transitive — making the transitivity low. Figure 2.11 demonstrates this. For each
new gray node added that connects with the two inner white nodes, the average local
clustering coefficient rises toward 1. This is because each new gray node has a local
clustering coefficient of 1. But each new gray node also adds many new intransitive 2-
stars, causing the transitivity of the network as a whole to fall toward 0.

If people (or nodes) have only one friend, then there is no question about friends of
friends — they do not exist. As a consequence, local clustering coefficient and transitiv-
ity are undefined for nodes of degree less than two; groups of isolates or dyads (two
nodes connected by an edge) have neither an average local clustering coefficient nor a
transitivity.

Downloaded from https://www.cambridge.org/core. University of Warwick, on 14 Feb 2025 at 20:10:13, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108883894.003


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108883894.003
https://www.cambridge.org/core

36 A Brief Guide to Network Science

Because graph-level transitivity and average local clustering coefficient are not the
same thing, I prefer to use transitivity when referring to the graph-level measure and aver-
age clustering coefficient (or clustering coefficient) when referring to the local measure.

2.3.3  Closeness Centrality

If you were looking to live near an airport with the shortest flights to all other cities,
you would be looking for an airport with high closeness centrality. If you were hoping to
identify a social influencer in a social network whose influence would spread most rapidly
to others, you would again be looking for someone with high closeness centrality.

Closeness centrality is defined as 1 over the sum of the shortest path lengths to all
other nodes:

1
=N
Zj:i dij

Figure 2.12 shows three networks with each node labeled with its closeness centrality.

Ci

Taking an end node from the network in panel (a), the sum of the distances to the two
other nodes is 1 + 2 = 3. The inverse of this gives the closeness centrality: 0.33. The
same logic applies to the middle node, which gives us 0.5.

In the network in panel (b), nodes are again labeled with their closeness centrality.
There are two things to notice here. First, closeness centrality goes down with the num-
ber of nodes included in the distance summation. Larger components will generally have
lower average closeness centrality. Second, an island can contain nodes that have a close-
ness centrality of 1 even though they are unreachable from the majority of the nodes.
Closeness is only calculated for reachable nodes. As a consequence, it is mainly only
meaningful for nodes within a single component.

The network in panel (c) is the same as the middle, except here closeness centrality
is normalized. The normalized closeness centrality is the same as the inverse of a node’s
average shortest path length. We can see this somewhat plainly if we consider the gray
node near the center. One over its closeness centrality gives us 1/0.58 = 1.72, which
is the number of edges on average needed to travel to each of the other nodes in that
component.

(a) (b) (€)
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Figure 2.12 Closeness centrality. Each node is labeled with its closeness centrality.
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2.3.4 Betweenness Centrality

When a node lies on the shortest path between many other pairs of nodes it has high
betweenness centrality. Cities along the Silk Road, such as Xi’an and Constantino-
ple, became what they are today because they had high betweenness centrality along
early trade routes. Many port cities have benefited from the same middle-man status in
economic trade. This is not always a good thing. Mexico’s Judrez is a city with high
betweenness in the drug trafficking trade, falling along the border between the USA and
Mexico. Its high betweenness made it one of the murder capitals of the world as cartels
fought for control of the city.

The betweenness centrality for a node is the number of shortest paths between all
other nodes that pass through it. Formally, this is computed as:

n=3 20

g
iz e

Here, oj(i) represents the number of shortest paths that pass from j to k through i. To
account for the fact that sometimes there are multiple shortest routes, we divide by the
total number of routes: oj. If all the shortest paths between j and k pass through i, this
will add 1 to the betweenness centrality. If some don’t pass through i, then the increase
in betweenness for node i is the fraction of shortest paths that pass through i. Figure 2.13
labels each node with its betweenness centrality.

Betweenness centrality increases with the size of the network. As betweenness is the
sum of paths, more nodes means more paths. To resolve this, betweenness is often nor-
malized by dividing by the maximum possible number of shortest paths. If all paths pass
through a node, as they do for the central node in Figure 2.13, the normalization scales its
betweenness value to 1. Using the same logic, betweenness centrality can also be com-
puted for edges. Wherever many paths converge to cross from one place to another, the

betweenness is high.

Figure 2.13 Betweenness centrality. Each node is labeled with its betweenness centrality — the
number of shortest paths between other nodes that pass through it. Six paths travel through the

©
©

central node, but none pass through the outer nodes.
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2.3.5 Eigenvector Centrality

Eigenvector centrality measures how important a node is based on how important the
nodes are that it is connected to. To provide an intuitive example, if a person has only one
friend (degree one), they are still likely to be a more important person if their one friend
is Paul McCartney than if it is, say, Jim Kooti from southern Oklahoma. Everyone knows
Paul. Many fewer know Jim. Eigenvector centrality measures this difference in prestige.
To be prestigious, one must receive prestige from others with prestige.

The definition is recursive. It requires that we know how prestigious nodes are before
we can compute how prestigious nodes are. Like many chicken-and-egg problems, this
one can be solved algorithmically by taking a random guess and then letting the network
work out the implications. Assign nodes random prestige values and then allow them to
transfer this to their neighbors. Receiving neighbors then take the prestige they receive
and send it out to their neighbors. Repeated several times, the relative prestige values will
stabilize. Because many people are likely to give prestige to Paul, and few give it to Jim,
Paul can in turn give more prestige than Jim. If you’re only going to have one friend, pick
someone with good eigenvector centrality.

Of course, eigenvector centrality is not specific to prestige. It applies to any adjacency
matrix and it is easily solved in practice using matrix algebra. Given a vector of values, X,
representing the prestige of every node such that the highest value is 1, we can multiply
this by the adjacency matrix, A. This distributes prestige to the neighboring nodes. When
this distribution is stable, the product of this multiplication will be the original vector, X,
multiplied by a scaling factor, A. The scaling factor is called the eigenvalue. Formally,
that is:

Ax = Xx

Software like R will handle this readily, and some example eigenvector centrality
measures are shown in the networks in Figure 2.14.

Eigenvector centrality is often most useful for undirected networks. PageRank and
Katz centrality are useful alternatives for directed networks. Each makes slightly

(a) @ (b) (c)
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Figure 2.14 Eigenvector Centrality. Each node is labeled with its eigenvector centrality. Note that
in the network in panel (c), nodes with the same degree can have higher scores if they connect with
nodes of higher eigenvector centrality.
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different assumptions about how value is distributed, but all are fairly equivalent in their
underlying logic. Chapter 19 discusses these measures in more detail.

2.3.6  Comparison of Centrality Measures

Itis useful to see centrality measures side by side. I have created the Mouse to demonstrate
these different centrality measures, shown in Figure 2.15. It is modeled after the pocket
mouse of the desert Southwest and it gives some personality to these measures, which
emphasize the head, body, or tail, for example.

The Mouse is inspired by Krackhardt’s kite network (Krackhardt, 1990). The Kite
is provided here for further comparison (Figure 2.16). Together the Mouse and the Kite
should help crystallize these centrality measures and where you might be likely to find
them.

There is no reason not to consider developing your own centrality measures. Often a
specific behavioral problem will require a measure that is fit to purpose. It is common
practice to do this to solve specific problems when you are unable to find an existing
measure.

In summary, high degree nodes can be found anywhere. High clustering coefficient
nodes are found in communities (small or large). High closeness nodes are found near
the center of the network. High betweenness nodes tend to separate different communi-
ties. And high eigenvector nodes tend to occur near higher degree nodes in assortative
communities, which is discussed next.
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Figure 2.15 Comparison of the Mouse’s centrality measures. Node sizes are scaled relative to the
maximum and minimum of the centrality measure to highlight the differences.
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Figure 2.16 Comparison of centrality measures using Krackhardt’s Kite. Node sizes are scaled
relative to the maximum and minimum of the centrality measure to highlight the differences, as for
the Mouse in Figure 2.15.

2.4  Assortativity and Homophily

Assortativity evaluates the degree to which nodes with similar properties connect with
each other. In social networks, this is known as homophily: “birds of a feather flock
together.” People tend to associate with others who share similar features. Network
analysis allows us to ask this about structural properties: for example, do nodes of a simi-
lar degree connect with one another? We can also ask about similarity in other attributes:
for example, do individuals connect with others of a similar age or job?

To evaluate assortativity we compute an assortativity coefficient, r, which is the Pear-
son correlation between pairs of connected nodes in the network with respect to the value
in question. To do this, we can generate an edge list from the network, replace the node
labels with the value for each node, and take the correlation of the two columns of values.

The assortativity coefficient lies between —1 and 1, indicating the extent of the net-
work’s assortativity. When r > 0, the network has assortative mixing, or positive
assortativity. When » = 0 the network is nonassortative. When r < 0 the network is
disassortative or is negatively assortative — similar nodes are not connected.

Figure 2.17 shows two networks that differ in their assortativity coefficients. It is clear
from the visualization that, in panel (a), nodes of similar sizes (indicating degree) are con-
nected with one another. In panel (b), nodes tend to be connected with nodes of different
sizes.

Assortativity can also be computed for node attributes. Figure 2.18 shows networks
that are assortative or disassortative with respect to node color.
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(a)

Figure 2.17 Two networks that are assortative or disassortative by degree. The assortativity
coefficients are 0.45 (left) and —0.62 (right). Node sizes are scaled to reflect relative degree.

(b)

O

Figure 2.18 An assortative (left) and disassortative (right) network by color. The network in panel
(a) has an assortativity coefficient of 0.57. The one in panel (b) is —0.65.

2.5 Community Detection

Networks are excellent for identifying communities. Given a set of people or things with
some definition of edges, we can determine which nodes are in which communities as
well as how many communities there are. This is powerful as it allows us to sort struc-
tured information into groups, identify communities who may be operating together, and
predict relationships before they form. Social media platforms that always seem to know
which of its many millions of users are our long lost friends are using community detec-
tion algorithms to identify them. Other recommender systems, which proffer us appealing
movies, clothes, and videos, are also supported by community detection algorithms. With
every choice we make, our community alignment becomes more well-defined and the
recommendations get harder to refuse.

More formally, the community detection problem is one of identifying clusters of
nodes that are more well connected to one another than they are to nodes in other commu-
nities. Dividing a network into sets of communities is called a partition. Identifying the
partition that best satisfies the community detection problem is the goal. This is not triv-
ial. The problem is that the number of possible partitions (the Bell number) grows rapidly
with the number of nodes: If there are two nodes, there are two partitions: either the nodes
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are together or they are separate. If there are three nodes, there are five partitions: each
node could be in its own community, two could share a community and the third could be
on its own, or they could all be in the same community. With twelve nodes, there are more
than four million partitions. The number quickly becomes computationally unfriendly.

The solution is to simplify and approximate. Different community detection algo-
rithms make different assumptions to simplify the problem. Some methods are hier-
archical clustering methods that assign nodes exclusively to specific groups (e.g., the
Girvan-Newman method). Others allow nodes to belong to multiple groups (e.g., the
clique percolation algorithm). Like centrality measures, they deserve a book of their own.
Here we will cover a few of the more popular algorithms. Before we do that, it is first
useful to describe modularity: the measure that allows us to recognize a good partition
when we see one.

2.5.1 Modularity

If we saw some people at a party, it would be fairly easy to identify how many groups
there were. We identify the groups by placing people who are close together in the same
group. If we imagine that people who are near one another share an edge, then we can
start to see how we might apply this logic to networks. We identify groups of nodes
that share many edges among themselves and few edges with other groups of nodes. We
can measure how good our grouping is using modularity. Modularity, Q, quantifies the
difference between the observed links and the expected links within communities.

The mathematics to quantify this is based on two things. First, we can identify internal
links within communities. Second, we can estimate the likelihood that we would see those
internal links if edges were distributed at random.

To make this concrete, consider a network of two dyads: four nodes with two edges
and each node with degree 1. Let our job be to assign nodes to two communities (let’s say
black and white), each with two nodes. How many different ways are there to distribute
these communities over the network? There are two ways, both shown in Figure 2.19:
links can either be within communities or between communities.

If we have to assign communities — so that community members are more likely to be
connected — we would do better to assign the same color to connected nodes. Modularity

(a) O (b) Y
O O
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Figure 2.19 Modularity: Two possible network architectures for four nodes with two links, each
node with degree 1, and two community assignments (black and white). The modularity for the
network in panel (a) is Q = 0.5. For the network in panel (b), Q = —0.5.
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tells us the same thing. If we observe links between nodes of the same color, we know
there is a 1 /2 chance we would observe this even if the colors were distributed at random.
The modularity, Q, is therefore 0.5. If we observe no edges between the same colors,
we know there is a 1/2 chance they could have been between colors. In this case, the
modularity, Q, is —0.5.

Here is the equation that formalizes that math for networks of any size:

1 kik;
0= 2E Z [Au - 2E] o(cis ¢j)

J

We can walk through this as follows: First, the Kronecker delta function, 6(c;, ¢j) is 1
if two nodes, i and j, are in the same community: ¢; = ¢;. Otherwise, it is 0. So we are
only concerned with cases where i and j are in the same community. Within the square
brackets, A;; represents the observed value of the edge between nodes i and j. The product
of k; and k; divided by two times the number of edges is the probability of an edge between
these two nodes observed at random. When considered over all pairs of nodes that are in
the same communities, this gives us our observed edges versus our expected edges within
communities. Finally, this is all normalized by two times the number of total edges, E.
The result, in English, is that modularity is increased whenever two nodes in the same
community are connected more than we would expect by chance and reduced whenever
they are connected less than we would expect by chance.

Modularity makes the simplifying assumption that a community member’s degree val-
ues are preserved. To help understand what this means, a three-node network with an
edge between two group members and a third node not in the group has a modularity of
0. Because the third node has a degree 0, it can never share an edge with another node
by chance. As a result, a set of group members who only have links between them and
no links to a set of isolates has modularity 0. This is not always desirable or intuitive.
Newman (2018) is a good source for additional thoughts on community detection.

The reason we need modularity is because community detection algorithms often gen-
erate many different partitions. Modularity can then be used to identify the partition that
best assigns nodes to communities (Fortunato, 2010). Positive Q values that are closer
to the maximum value of 1.0 indicate better community structure. In contrast, small or
negative Q indicates poor community structure.

In practice, the Q values of large real-world networks such as the Internet and cellular
phone networks are relatively high, ranging from 0.42 to 0.78 (Blondel et al., 2008).
These values are found by using Q to identify the best partition produced by a community
detection algorithm. In the following sections I describe several popular algorithms.

2.5.2 Community Detection Algorithms
2.5.2.1 The Girvan-Newman Method

The Girvan-Newman Method (Girvan & Newman, 2002), also called the edge
betweenness method, is based on the observation that edges connecting separate com-
munities should have high edge betweenness: the shortest paths between members of
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Figure 2.20 A series of partitions created by removing the edge with the highest edge betweenness.
The edge to be removed is indicated with a dotted line. The partitions are created from left to right,
each time removing the edge with the highest edge betweenness.
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Figure 2.21 The hierarchy of communities identified by the Girvan—-Newman method. Any
horizontal division along the dendrogram on the left will produce a partition of the network into
communities. The y-axis on the dendrogram shows the number of remaining edges for a given
partition. The partition with the highest modularity is shown in panel (a) and identified by boxes in
panel (b). The modularity of the community shown is 0.51.

different communities will pass through edges with high edge betweenness. This allows
us to identify communities by sequentially removing the edge with the highest edge
betweenness score. This in turn produces a hierarchy of partitions, which separate the
network into smaller and smaller subnetworks until all nodes are isolates. Figure 2.20
shows a few steps in this process.

The hierarchy (or dendrogram) of partitions that is the outcome of this process is shown
in Figure 2.21. By cutting the dendrogram horizontally, one identifies a specific partition.
The partition in the hierarchy with the highest modularity is used to assign community
membership to nodes. The partition with the highest QO is shown in the figure on the
right.
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Figure 2.22 Comparison of different community detection algorithms. In the clique-percolation
result on the right, a 3-clique is shown in black.

2.5.2.2 Other Methods

Community detection algorithms take a variety of forms. Some examples are shown in
Figure 2.22. The Louvain method (Blondel et al., 2008) starts by assigning each node to
its own individual community. Then communities (initially nodes) are chosen at random
and pooled together with another community that best increases the modularity. This
is repeated until there is only one community or until the modularity can no longer be
increased. The partition with the highest modularity is chosen.

Random walker algorithms, like Walktrap (Pons & Latapy, 2005; see also Rosvall
& Bergstrom, 2008), assume that random walkers moving between nodes via edges will
tend to stay within communities more often than they pass between them. This allows
the algorithm to identify a distance between communities using the movement patterns of
random walkers. Partitions can then be sequentially identified based on the above distance
assumption to produce a hierarchy of partitions. The hierarchy can then be evaluated
using modularity.

The clique percolation algorithm (Palla et al., 2005) allows individual nodes to
belong to multiple communities. It starts by identifying k-cliques, which contain k£ nodes
that all share edges with one another. The smallest is a 3-clique or triangle. Communities
are defined as sets of k-clique-adjacent k-cliques. k-cliques are k-clique-adjacent if they
share k — 1 neighbors. This algorithm often assigns many nodes to isolate communities
and preserves only those communities that are engaged in k-cliques of size 3 or more.

Note that some community detection algorithms (e.g., Louvain) apply themselves ran-
domly to the nodes as they search for new partitions. As a consequence, the algorithm
may not always return the same partition.
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